If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+38k=0
a = 5; b = 38; c = 0;
Δ = b2-4ac
Δ = 382-4·5·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-38}{2*5}=\frac{-76}{10} =-7+3/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+38}{2*5}=\frac{0}{10} =0 $
| 1432=10^x | | 2y-14=10–4y | | 6.43=6.15+c | | 1/5x-4/3=x-2/5 | | x2–4x–90=0 | | -18-3y=12 | | 31-v=162 | | 2/5x-1/2=6/5 | | 2/5x-1/2=6/5x | | 2x-100°=180° | | b7=-20 | | x+.05x=6326.67 | | x^2+64=-20x | | 2h+68+50=90 | | 2/5x=9-1/2x | | 2h+68+50=180 | | w–4=2 | | -5(s-3)=-10 | | 6x+4=8(6)+3 | | 12.5x=8.2 | | b÷18=21* | | 4x+193x=23 | | 2x.10/3=3x/2 | | d+133+139=90 | | 8c=80* | | 4x+19x3=23 | | p-30=42* | | d+133+139=180 | | 25x^2+8=33 | | x+11=30* | | -4x+40=-16 | | 2=5b/5 |